My research is focused on understanding common features of neurodevelopmental and neurodegenerative disease. Despite the large number of unique conditions that affect the nervous system, several abnormalities are shared by multiple developmental and degenerative conditions. I am specifically interested in two key cellular functions:

  1. Regulation of iron. Iron is an important co-factor for many enzymes involved in energy production, RNA synthesis, oxygen regulation, and oxidative stress. Too little or too much iron can damage cells, particularly in the nervous system.
  2. Insulin signaling pathway activity. Insulin signaling is one important way that all cells respond to their environment to regulate survival, growth, and plasticity in neurons which is important for learning and memory. Abnormal pathway activity can lead to cell death, cancer, altered structure, and neuronal dysfunction.

C. elegans is a great model system for asking questions about why iron and insulin signaling are so important for a healthy nervous system. C. elegans are tiny (~1mm long) worms found in the soil.  While they don’t have brains, these worms do have a well-characterized nervous system with most of the same neurotransmitters and receptors as humans. They were the first multi-cellular organism to have a sequenced genome, and there are several mutant strains available including models of diseases such as Alzheimer’s, Parkinson’s, and ALS, and strains with altered insulin signaling and iron regulation. Students in my lab learn to raise C. elegans and perform genetic, biochemical, and behavioral experiments aimed at better understanding how iron and insulin signaling interact within a healthy and diseased nervous system.